what & why ?
早在 2013年, 有人在微博上发布了以下代码段:
['10','10','10','10','10'].map(parseInt); // [10, NaN, 2, 3, 4]复制成功
parseInt() 函数解析一个字符串参数,并返回一个指定基数的整数 (数学系统的基础)。
const intValue = parseInt(string[, radix]);复制成功
string 要被解析的值。如果参数不是一个字符串,则将其转换为字符串(使用 ToString 抽象操作)。字符串开头的空白符将会被忽略。
radix 一个介于2和36之间的整数(数学系统的基础),表示上述字符串的基数。默认为10。 返回值 返回一个整数或NaN
parseInt(100); // 100 parseInt(100, 10); // 100 parseInt(100, 2); // 4 -> converts 100 in base 2 to base 10复制成功
注意: 在radix为 undefined,或者radix为 0 或者没有指定的情况下,JavaScript 作如下处理:
更多详见parseInt | MDN
map() 方法创建一个新数组,其结果是该数组中的每个元素都调用一个提供的函数后返回的结果。
var new_array = arr.map(function callback(currentValue[,index[, array]]) { // Return element for new_array }[, thisArg])复制成功
可以看到callback回调函数需要三个参数, 我们通常只使用第一个参数 (其他两个参数是可选的)。 currentValue 是callback 数组中正在处理的当前元素。 index可选, 是callback 数组中正在处理的当前元素的索引。 array可选, 是callback map 方法被调用的数组。 另外还有thisArg可选, 执行 callback 函数时使用的this 值。
const arr = [1, 2, 3]; arr.map((num) => num + 1); // [2, 3, 4]复制成功
更多详见Array.prototype.map() | MDN
回到我们真实的事例上
['1', '2', '3'].map(parseInt)复制成功
对于每个迭代map, parseInt()传递两个参数: 字符串和基数。 所以实际执行的的代码是:
['1', '2', '3'].map((item, index) => { return parseInt(item, index) })复制成功
即返回的值分别为:
parseInt('1', 0) // 1 parseInt('2', 1) // NaN parseInt('3', 2) // NaN, 3 不是二进制复制成功
所以:
['1', '2', '3'].map(parseInt) // 1, NaN, NaN复制成功
由此,加里·伯恩哈德例子也就很好解释了,这里不再赘述
['10','10','10','10','10'].map(parseInt); // [10, NaN, 2, 3, 4]复制成功
如果您实际上想要循环访问字符串数组, 该怎么办? map()然后把它换成数字?使用编号!
['10','10','10','10','10'].map(Number); // [10, 10, 10, 10, 10]复制成功
举个栗子,我们知道目前的一种说法是当 1 秒内连续播放 24 张以上的图片时,在人眼的视觉中就会形成一个连贯的动画,所以在电影的播放(以前是,现在不知道)中基本是以每秒 24 张的速度播放的,为什么不 100 张或更多是因为 24 张就可以满足人类视觉需求的时候,100 张就会显得很浪费资源。
再举个栗子,假设电梯一次只能载一人的话,10 个人要上楼的话电梯就得走 10 次,是一种浪费资源的行为;而实际生活正显然不是这样的,当电梯里有人准备上楼的时候如果外面又有人按电梯的话,电梯会再次打开直到满载位置,从电梯的角度来说,这时一种节约资源的行为(相对于一次只能载一个人)。
这里以判断页面是否滚动到底部为例,普通的做法就是监听 window 对象的 scroll 事件,然后再函数体中写入判断是否滚动到底部的逻辑:
$(window).on('scroll', function () { // 判断是否滚动到底部的逻辑 let pageHeight = $('body').height(), scrollTop = $(window).scrollTop(), winHeight = $(window).height(), thresold = pageHeight - scrollTop - winHeight; if (thresold > -100 && thresold <= 20) { console.log('end'); } });复制成功

这样做的一个缺点就是比较消耗性能,因为当在滚动的时候,浏览器会无时不刻地在计算判断是否滚动到底部的逻辑,而在实际的场景中是不需要这么做的,在实际场景中可能是这样的:在滚动过程中,每隔一段时间在去计算这个判断逻辑。而函数节流所做的工作就是每隔一段时间去执行一次原本需要无时不刻地在执行的函数,所以在滚动事件中引入函数的节流是一个非常好的实践:
$(window).on('scroll', throttle(function () { // 判断是否滚动到底部的逻辑 let pageHeight = $('body').height(), scrollTop = $(window).scrollTop(), winHeight = $(window).height(), thresold = pageHeight - scrollTop - winHeight; if (thresold > -100 && thresold <= 20) { console.log('end'); } }));复制成功

加上函数节流之后,当页面再滚动的时候,每隔 300ms 才会去执行一次判断逻辑。
简单来说,函数的节流就是通过闭包保存一个标记(canRun = true),在函数的开头判断这个标记是否为 true,如果为 true 的话就继续执行函数,否则则 return 掉,判断完标记后立即把这个标记设为 false,然后把外部传入的函数的执行包在一个 setTimeout 中,最后在 setTimeout 执行完毕后再把标记设置为 true(这里很关键),表示可以执行下一次的循环了。当 setTimeout 还未执行的时候,canRun 这个标记始终为 false,在开头的判断中被 return 掉。
function throttle(fn, interval = 300) { let canRun = true; return function () { if (!canRun) return; canRun = false; setTimeout(() => { fn.apply(this, arguments); canRun = true; }, interval); }; }复制成功
这里以用户注册时验证用户名是否被占用为例,如今很多网站为了提高用户体验,不会再输入框失去焦点的时候再去判断用户名是否被占用,而是在输入的时候就在判断这个用户名是否已被注册:
$('input.user-name').on('input', function () { $.ajax({ url: `https://just.com/check`, method: 'post', data: { username: $(this).val(), }, success(data) { if (data.isRegistered) { $('.tips').text('该用户名已被注册!'); } else { $('.tips').text('恭喜!该用户名还未被注册!'); } }, error(error) { console.log(error); }, }); });复制成功

很明显,这样的做法不好的是当用户输入第一个字符的时候,就开始请求判断了,不仅对服务器的压力增大了,对用户体验也未必比原来的好。而理想的做法应该是这样的,当用户输入第一个字符后的一段时间内如果还有字符输入的话,那就暂时不去请求判断用户名是否被占用。在这里引入函数防抖就能很好地解决这个问题:
$('input.user-name').on('input', debounce(function () { $.ajax({ url: `https://just.com/check`, method: 'post', data: { username: $(this).val(), }, success(data) { if (data.isRegistered) { $('.tips').text('该用户名已被注册!'); } else { $('.tips').text('恭喜!该用户名还未被注册!'); } }, error(error) { console.log(error); }, }); }));复制成功

其实函数防抖的原理也非常地简单,通过闭包保存一个标记来保存 setTimeout 返回的值,每当用户输入的时候把前一个 setTimeout clear 掉,然后又创建一个新的 setTimeout,这样就能保证输入字符后的 interval 间隔内如果还有字符输入的话,就不会执行 fn 函数了。
function debounce(fn, interval = 300) { let timeout = null; return function () { clearTimeout(timeout); timeout = setTimeout(() => { fn.apply(this, arguments); }, interval); }; }复制成功
其实函数节流与函数防抖的原理非常简单,巧妙地使用 setTimeout 来存放待执行的函数,这样可以很方便的利用 clearTimeout 在合适的时机来清除待执行的函数。
使用函数节流与函数防抖的目的,在开头的栗子中应该也能看得出来,就是为了节约计算机资源。
let $html = document.documentElement window.onscroll = myThrottle(isEnd) function isEnd() { let { clientHeight, height, scrollTop } = $html console.log({ clientHeight, height, scrollTop }) } function myThrottle (fn, interval=300) { let canRun = true return function(){ if(!canRun) { console.log(`被节流`) return } canRun = false setTimeout(() => { fn.apply(this) canRun = true }, interval) } } let $input = document.querySelector('input') $input.oninput = (value) => myDebounce(()=>isDone(value)) function isDone() { // $.post({data:'43oo'}) } function myDebounce(fn, interval=300) { let timeout = null if(!timeout) { clearTimeout(timeout) timeout = setTimeout(()=>{ fn.apply(this) }, interval) } }复制成功
Set 和 Map 主要的应用场景在于 数据重组 和 数据储存
Set 是一种叫做集合的数据结构,Map 是一种叫做字典的数据结构
ES6 新增的一种新的数据结构,类似于数组,但成员是唯一且无序的,没有重复的值。
Set 本身是一种构造函数,用来生成 Set 数据结构。
new Set([iterable])复制成功
举个例子:
const s = new Set() [1, 2, 3, 4, 3, 2, 1].forEach(x => s.add(x)) for (let i of s) { console.log(i) // 1 2 3 4 } // 去重数组的重复对象 let arr = [1, 2, 3, 2, 1, 1] [... new Set(arr)] // [1, 2, 3]复制成功
Set 对象允许你储存任何类型的唯一值,无论是原始值或者是对象引用。
向 Set 加入值的时候,不会发生类型转换,所以5和"5"是两个不同的值。Set 内部判断两个值是否不同,使用的算法叫做“Same-value-zero equality”,它类似于精确相等运算符(===),主要的区别是**NaN等于自身,而精确相等运算符认为NaN不等于自身。**
let set = new Set(); let a = NaN; let b = NaN; set.add(a); set.add(b); set // Set {NaN} let set1 = new Set() set1.add(5) set1.add('5') console.log([...set1]) // [5, "5"]复制成功
Set 实例属性
constructor: 构造函数
size:元素数量
let set = new Set([1, 2, 3, 2, 1]) console.log(set.length) // undefined console.log(set.size) // 3复制成功
Set 实例方法
操作方法
add(value):新增,相当于 array里的push
delete(value):存在即删除集合中value
has(value):判断集合中是否存在 value
clear():清空集合
let set = new Set() set.add(1).add(2).add(1) set.has(1) // true set.has(3) // false set.delete(1) set.has(1) // false复制成功
Array.from 方法可以将 Set 结构转为数组
const items = new Set([1, 2, 3, 2]) const array = Array.from(items) console.log(array) // [1, 2, 3] // 或 const arr = [...items] console.log(arr) // [1, 2, 3]复制成功
遍历方法(遍历顺序为插入顺序)
keys():返回一个包含集合中所有键的迭代器
values():返回一个包含集合中所有值得迭代器
entries():返回一个包含Set对象中所有元素得键值对迭代器
forEach(callbackFn, thisArg):用于对集合成员执行callbackFn操作,如果提供了 thisArg 参数,回调中的this会是这个参数,没有返回值
let set = new Set([1, 2, 3]) console.log(set.ngs()) // SetIterator {1, 2, 3} console.log(set.values()) // SetIterator {1, 2, 3} console.log(set.entries()) // SetIterator {1, 2, 3} for (let item of set.keys()) { console.log(item); } // 1 2 3 for (let item of set.entries()) { console.log(item); } // [1, 1] [2, 2] [3, 3] set.forEach((value, key) => { console.log(key + ' : ' + value) }) // 1 : 1 2 : 2 3 : 3 console.log([...set]) // [1, 2, 3]复制成功
Set 可默认遍历,默认迭代器生成函数是 values() 方法
Set.prototype[Symbol.iterator] === Set.prototype.values // true复制成功
所以, Set可以使用 map、filter 方法
let set = new Set([1, 2, 3]) set = new Set([...set].map(item => item * 2)) console.log([...set]) // [2, 4, 6] set = new Set([...set].filter(item => (item >= 4))) console.log([...set]) //[4, 6]复制成功
因此,Set 很容易实现交集(Intersect)、并集(Union)、差集(Difference)
let set1 = new Set([1, 2, 3]) let set2 = new Set([4, 3, 2]) let intersect = new Set([...set1].filter(value => set2.has(value))) let union = new Set([...set1, ...set2]) let difference = new Set([...set1].filter(value => !set2.has(value))) console.log(intersect) // Set {2, 3} console.log(union) // Set {1, 2, 3, 4} console.log(difference) // Set {1}复制成功
WeakSet 对象允许你将弱引用对象储存在一个集合中
WeakSet 与 Set 的区别:
属性:
constructor:构造函数,任何一个具有 Iterable 接口的对象,都可以作参数
const arr = [[1, 2], [3, 4]] const weakset = new WeakSet(arr) console.log(weakset)复制成功

方法:
var ws = new WeakSet() var obj = {} var foo = {} ws.add(window) ws.add(obj) ws.has(window) // true ws.has(foo) // false ws.delete(window) // true ws.has(window) // false复制成功
集合 与 字典 的区别:
const m = new Map() const o = {p: 'haha'} m.set(o, 'content') m.get(o) // content m.has(o) // true m.delete(o) // true m.has(o) // false复制成功
任何具有 Iterator 接口、且每个成员都是一个双元素的数组的数据结构都可以当作Map构造函数的参数,例如:
const set = new Set([ ['foo', 1], ['bar', 2] ]); const m1 = new Map(set); m1.get('foo') // 1 const m2 = new Map([['baz', 3]]); const m3 = new Map(m2); m3.get('baz') // 3复制成功
如果读取一个未知的键,则返回undefined。
new Map().get('asfddfsasadf') // undefined复制成功
注意,只有对同一个对象的引用,Map 结构才将其视为同一个键。这一点要非常小心。
const map = new Map(); map.set(['a'], 555); map.get(['a']) // undefined复制成功
上面代码的set和get方法,表面是针对同一个键,但实际上这是两个值,内存地址是不一样的,因此get方法无法读取该键,返回undefined。
由上可知,Map 的键实际上是跟内存地址绑定的,只要内存地址不一样,就视为两个键。这就解决了同名属性碰撞(clash)的问题,我们扩展别人的库的时候,如果使用对象作为键名,就不用担心自己的属性与原作者的属性同名。
如果 Map 的键是一个简单类型的值(数字、字符串、布尔值),则只要两个值严格相等,Map 将其视为一个键,比如0和-0就是一个键,布尔值true和字符串true则是两个不同的键。另外,undefined和null也是两个不同的键。虽然NaN不严格相等于自身,但 Map 将其视为同一个键。
let map = new Map(); map.set(-0, 123); map.get(+0) // 123 map.set(true, 1); map.set('true', 2); map.get(true) // 1 map.set(undefined, 3); map.set(null, 4); map.get(undefined) // 3 map.set(NaN, 123); map.get(NaN) // 123复制成功
Map 的属性及方法
属性:
constructor:构造函数
size:返回字典中所包含的元素个数
const map = new Map([ ['name', 'An'], ['des', 'JS'] ]); map.size // 2复制成功
操作方法:
遍历方法
const map = new Map([ ['name', 'An'], ['des', 'JS'] ]); console.log(map.entries()) // MapIterator {"name" => "An", "des" => "JS"} console.log(map.keys()) // MapIterator {"name", "des"}复制成功
Map 结构的默认遍历器接口(Symbol.iterator属性),就是entries方法。
map[Symbol.iterator] === map.entries // true复制成功
Map 结构转为数组结构,比较快速的方法是使用扩展运算符(...)。
对于 forEach ,看一个例子
const reporter = { report: function(key, value) { console.log("Key: %s, Value: %s", key, value); } }; let map = new Map([ ['name', 'An'], ['des', 'JS'] ]) map.forEach(function(value, key, map) { this.report(key, value); }, reporter); // Key: name, Value: An // Key: des, Value: JS复制成功
在这个例子中, forEach 方法的回调函数的 this,就指向 reporter
与其他数据结构的相互转换
Map 转 Array
const map = new Map([[1, 1], [2, 2], [3, 3]]) console.log([...map]) // [[1, 1], [2, 2], [3, 3]]复制成功
Array 转 Map
const map = new Map([[1, 1], [2, 2], [3, 3]]) console.log(map) // Map {1 => 1, 2 => 2, 3 => 3}复制成功
Map 转 Object
因为 Object 的键名都为字符串,而Map 的键名为对象,所以转换的时候会把非字符串键名转换为字符串键名。
function mapToObj(map) { let obj = Object.create(null) for (let [key, value] of map) { obj[key] = value } return obj } const map = new Map().set('name', 'An').set('des', 'JS') mapToObj(map) // {name: "An", des: "JS"}复制成功
Object 转 Map
function objToMap(obj) { let map = new Map() for (let key of Object.keys(obj)) { map.set(key, obj[key]) } return map } objToMap({'name': 'An', 'des': 'JS'}) // Map {"name" => "An", "des" => "JS"}复制成功
Map 转 JSON
function mapToJson(map) { return JSON.stringify([...map]) } let map = new Map().set('name', 'An').set('des', 'JS') mapToJson(map) // [["name","An"],["des","JS"]]复制成功
JSON 转 Map
function jsonToStrMap(jsonStr) { return objToMap(JSON.parse(jsonStr)); } jsonToStrMap('{"name": "An", "des": "JS"}') // Map {"name" => "An", "des" => "JS"}复制成功
WeakMap 对象是一组键值对的集合,其中的键是弱引用对象,而值可以是任意。
注意,WeakMap 弱引用的只是键名,而不是键值。键值依然是正常引用。
WeakMap 中,每个键对自己所引用对象的引用都是弱引用,在没有其他引用和该键引用同一对象,这个对象将会被垃圾回收(相应的key则变成无效的),所以,WeakMap 的 key 是不可枚举的。
属性:
方法:
let myElement = document.getElementById('logo'); let myWeakmap = new WeakMap(); myWeakmap.set(myElement, {timesClicked: 0}); myElement.addEventListener('click', function() { let logoData = myWeakmap.get(myElement); logoData.timesClicked++; }, false);复制成功
Object 与 Set
// Object const properties1 = { 'width': 1, 'height': 1 } console.log(properties1['width']? true: false) // true // Set const properties2 = new Set() properties2.add('width') properties2.add('height') console.log(properties2.has('width')) // true复制成功
Object 与 Map
JS 中的对象(Object),本质上是键值对的集合(hash 结构)
const data = {}; const element = document.getElementsByClassName('App'); data[element] = 'metadata'; console.log(data['[object HTMLCollection]']) // "metadata"复制成功
但当以一个DOM节点作为对象 data 的键,对象会被自动转化为字符串[Object HTMLCollection],所以说,Object 结构提供了 字符串-值 对应,Map则提供了 值-值 的对应
本
JavaScript垃圾回收是一种内存管理技术。在这种技术中,不再被引用的对象会被自动删除,而与其相关的资源也会被一同回收。
Map和Set中对象的引用都是强类型化的,并不会允许垃圾回收。这样一来,如果Map和Set中引用了不再需要的大型对象,如已经从DOM树中删除的DOM元素,那么其回收代价是昂贵的。
为了解决这个问题,ES6还引入了另外两种新的数据结构,即称为WeakMap和WeakSet的弱集合。这些集合之所以是“弱的”,是因为它们允许从内存中清除不再需要的被这些集合所引用的对象。
使用场景:储存 DOM 节点,而不用担心这些节点从文档移除时,会引发内存泄漏。